openEHR a Game Changer Comes of Age


I’ve been watching openEHR over more than fifteen years, and although I have always been impressed by its potential to enable us to do things differently, I must admit it has been a slow burn, and take up has been limited, particularly in the UK where it was invented. However, due to some recent developments, I think this is about to change, and that openEHR is going to take off in a big way. This is going to revolutionise how we think about and do digital health, and it should increase the speed at which we can do it by at least two orders of magnitude. Why do I say this, and what evidence is there to support my assertion?

openEHR has come of age with a large number of successful small implementations, and a few much larger ones (1) which have proven the approach works at scale. We have also seen the use of openEHR by governments and major health providers across the globe, including the NHS (2), as the mechanism for the creation and curation of clinical content standards in their territories. In addition, changes to the openEHR Foundation have made it unarguably an open source organisation with a global user community; a growing vendor community has developed offering both open source and proprietary tools and components supporting the standard; and there is serious interest from major system integrators. These changes make openEHR look like a much better alternative to the hegemony of the big US megasuite providers, who still want to shape health and care systems in their image and who own the platforms on which these providers will increasingly depend.

UPDATE (12 April 16)

Possibly the best explanation of openEHR I’ve seen “openEHR technical basics for HL7 and FHIR users” Well worth reading.

UPDATE (15 March 16)

Some great videos here which provide an easy way to understand various aspects of openEHR.

In particular:

Clinician-led e-health records – An introduction to openEHR for clinicians

National governance of openEHR archetypes in Norway – A national approach to building information models with openEHR. Many lessons here for HSCIC who have just started doing something similar here.

UPDATE (13 July 15)

In their PQQ which kicks of the procurement for the Datawell to support Devo Manch,  Manchester have mandated openEHR along with other established standards including IHE-XDS. This could potentially lead to the largest implementation of openEHR in the UK with Manchester building on pioneering work in Moscow and Leeds

UPDATE  (24 Apr 15) Further information and news about the growing interest in openEHR will be found here

Firstly, everything I read and all of the people I talk to across the globe about digital health agree on a couple of things.

  • Firstly, we need to move towards a platform architecture into which we can plug the thousands of apps and hundreds of traditional systems that we currently use in health and care; an architecture which will enable all of these to interoperate and work together.

  • Secondly, we need to separate content (the data, information and knowledge that applications consume and update) from the applications that process it; and that content needs to be expressed in a modular, computable and reusable format.

Beyond this, agreement breaks down – people do argue about business models (who should own and control the platform), and also the details of the particular standards and technology to be used – but on the core principles, everyone with any credibility agrees.

When it comes to business models, some would like to own the platform, because doing so would create a massive commercial opportunity. And while some still pursue this goal, most significantly Apple, others have decided, as I have, that ownership of the platform is neither achievable (competitive and customer pressures mean even the mighty Apple can’t win this battle) nor is it desirable from the perspective of citizens, health and care providers and payers – none of whom wish to be locked in or to pay the ‘fruit tax’ or its equivalent.

Others, including me, and more significantly some big players, have come to the view that while it might be great to own the platform, that isn’t going to happen and so we need to move to an open platform which nobody owns (in the sense that nobody owns the Internet). As for commercial opportunities, they will still exist higher up the value chain, and the existence of the platform will create such opportunities by the spadeful. Surely it’s more fruitful to concentrate on these, rather than waste time and resource on a battle no one can win.

On the details of implementation, disagreement is less significant. The two major contenders, openEHR and the Healthcare Consortium, both have similar approaches, and they are already converging through the Clinical Information Modeling Initiative (CIMI) to reduce their differences to the point where they really don’t matter and can be dealt with at a purely technical level, with their components being easily interchangeable.

So, if we want to create an open platform, what do we need? We need openEHR or something like it – and frankly there is nothing else as mature or as well supported as openEHR.

OpenEHR is not software, nor is it a particular technology. It’s an open specification or standard for the representation of a key bit of content – the health and care record. The specification is open source (insofar as you can apply this term to something that is not software), and it’s curated by the openEHR Foundation, which is a not-for-profit company democratically controlled by those who choose to be part of the global openEHR community (and anybody can). The community is truly global and growing, and consists of both users and developers; and is supported by a number of vendors who can offer tools, components and services supporting the standard.

openEHR provides a simple, robust and stable over-arching reference model (3) which defines a formalism for the representation of the modular components of a health and care record. openEHR calls these ‘archetypes’ and they define the elements of a record, their properties, and how they are represented (including bindings to terminologies and classifications). Archetypes are intended to represent a superset of all those properties that might be associated with the concept they represent (at a high level these will be either an observation, an evaluation, an instruction or an action). Archetypes can then be constrained and/or combined in a ‘template’ to provide practical interoperable components for use in a particular context or system.

The tools available for the creation of archetypes and templates are open source (as are the vast majority of the archetypes and templates created with them), and this makes openEHR easily accessible to clinicians and other domain experts while also providing system developers with robust components to handle many of the technical complexities. openEHR enables clinicians to concentrate of the clinical stuff, and developers to concentrate on the technical stuff, without needed to understand more about the other domain than they want to.

By building systems using openEHR, system development work shifts from the technical level to the domain level. A repository that has been built to store an openEHR health and care record does not need to take account of the particular content of a given archetype. Whatever that archetype might represent, the repository will be able to store it, and you will be able to query that repository about its content. This feature of openEHR is the key enabler of much faster application development, because the addition of new features will not require changes to database schemas (with all the associated testing and data migration that entails). Instead, all that is needed is the addition of some archetypes and/or templates – and these may already be available as the result of work by others in the community, or else they can be created rapidly by a relevant domain expert – plus the creation of some new user interface components, and these can often be generated automatically from the underlying templates. In this way changes can be made by end users, or by people close to them. This will reduce the time to add new features from months to hours, and the time to build new systems from years to weeks.

openEHR is also technology independent. Applications don’t need to concern themselves with the technology of a particular implementation of an openEHR repository – that’s purely a matter for the implementer, who can chose whatever technology works best for them at a particular time and in a particular context. The applications that use it will not be affected, so long as they remain compliant with the standard. We can see this happening in the dozen or so existing implementations of openEHR repositories: they use different operating systems, different databases (SQL and NOSQL) and various development tools to create both open source and proprietary implementations of the standard. Compliant implementations of the standard from different vendors are interchangeable, and a single query can be executed across multiple implementations. openEHR is vendor independent, and it eliminates vendor lock-in.

Suppliers of openEHR repositories will have to compete on performance, security, robustness, value and service – they cannot rely on customer lock-in, as the vendors of many traditional EHR systems have in the past. From the perspective of health and care providers, openEHR puts them back in charge of their own destiny. This contrasts with most of the current successful approaches to the delivery of enterprise-wide EHR, where customer institutions have adopted one of the four big US megasuites, and then have had to adapt internal processes and organisation to fit with the chosen system – in effect, you become an EPIC, Cerner, Allscripts or Meditech institution, rather than a customer who calls the shots.

The ‘megasuite model’ has worked spectacularly well (if expensively) in a number of big US hospitals, particularly for EPIC, but that model starts to break down when you seek to extend the scope of a system from an institution to an integrated health and care community. It also fits badly with UK and other European models of health and care, which are not so close to the US model as the megasuite vendors might hope them to be.

Of course European health and care providers don’t want to remodel their processes along American lines – why would relatively successful European providers want to adopt systems designed primarily for the inequitable and unsustainable US system? According to the well respected US Commonwealth Foundation the United States ranks last among eleven leading developed countries on measures of access, equity, quality, efficiency, and healthy lives (and, by the way, the UK’s NHS takes the number one spot).

Much of my conviction about openEHR comes from work I’ve been involved in with HANDI, in building HANDI-HOPD – the HANDI Open Platform Demonstrator, which has now been adopted by NHS England as the NHS England Code4Health Platform. This platform provides a simulation environment for any system or service that wants to expose an API (interface) within an open ecosystem, and it includes an openEHR repository loaded with test data from the Leeds Lab Project.

We have exposed SMART and FHIR APIs, as well as the native openEHR service API, on top of the repository; we have used this to build a number of apps, and also demonstrated how you can simply plug in apps that were developed elsewhere using the SMART API. We have also used this platform to prototype a UK localisation of an open source ePrescribing product (www.openep.org), and the speed at which we have been able to carry out the localisation and meet some special mental health requirements has been impressive – indeed so impressive that we will shortly be announcing the first NHS Trusts who will be taking the system live.

Work is currently being completed to re-brand the HANDI platform as the NHS Code4Health Platform, and this will shortly be available for those who want to learn more and experiment with this and other open technologies.

openEHR has come of age – If you don’t believe, me give it a try.

Notes:

This is a slightly updated version of the original with a few minor changes to make it more readable to the general reader and correct some typos my thanks for this to my friend and colleague Conrad Taylor.

1) Large scale implementations of openEHR include:

Moscow – Integrated health and social care 12 million population 

Slovenia – Country wide 2 million population

Brazil – Unimed Medical cooperative

2) Health systems using openEHR to create curate and publish clinical content.

NHS HSCIC

NHS Scotland

Australia

Norway

Slovenia

Brazil

openEHR Foundation 

Applications built on openEHR platform

OPENeP EPMA product www.openep.org

Marand Think!Med Clinical, Ljubljana Children’s Hospital http://www.marand-thinkmed.com

Ocean Multiprac Infection control, Queensland Health, Australia http://www.multiprac.com/?portfolio_4=infection-control-2

Ocean LinkedEHR, Western Sydney, Australia  http://openehr.org/news_events/industry_news.php?id=121

DIPS Arena, Norway http://openehr.org/news_events/industry_news.php?id=97

mConsole, Mental Health patient portal, Code24, Netherlands

Clinical Decision Support, Cambio, Sweden http://www.cambio.lk/News-and-facts/Produktnytt/COSMIC-Clinical-Decision-Support1/

See also http://www.openehr.org/who_is_using_openehr/healthcare_providers_and_authorities

3 Some key documents on OpenEHR

OpenEHR Architecture Overview

OpenEHR Reference Model